AHA-BUCH

Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Intervalldaten und generalisierte lineare Modelle

 eBook
Sofort lieferbar | Lieferzeit:3-5 Tage I

46,99 €*

ISBN-13:
9783658087463
Einband:
eBook
Seiten:
110
Autor:
Michael Seitz
Serie:
BestMasters
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
1 - PDF Watermark
Sprache:
Deutsch
Beschreibung:

Da eine direkte präzise Schätzung von Parametern mit Intervalldaten in generalisierten linearen Modellen nicht möglich ist, formuliert Michael Seitz die Intervallschätzungen der Parameter als Optimierungsproblem und schlägt numerische Verfahren vor, um diese zu lösen. Die Herausforderung liegt dabei in der numerischen Lösung des hochdimensionalen Optimierungsproblems. Dieses wird hier näherungsweise mit einer Kombination aus bekannten numerischen Verfahren für nicht-lineare Zielfunktionen und heuristischem Vorgehen gelöst. Des Weiteren werden für einige Spezialfälle andere zuverlässigere Verfahren vorgestellt.

Michael Seitz verfasste seine Masterarbeit bei Prof. Dr. Thomas Augustin am Institut für Statistik an der Ludwig-Maximilians-Universität München und promoviert derzeit an der Technischen Universität München.
Numerische Optimierungsverfahren zur Lösung des Problems.- Direkte Optimierung der Parameter und Optimierung.- Anwendung der Verfahren auf simulierte Daten.
Da eine direkte präzise Schätzung von Parametern mit Intervalldaten in generalisierten linearen Modellen nicht möglich ist, formuliert Michael Seitz die Intervallschätzungen der Parameter als Optimierungsproblem und schlägt numerische Verfahren vor, um diese zu lösen. Die Herausforderung liegt dabei in der numerischen Lösung des hochdimensionalen Optimierungsproblems. Dieses wird hier näherungsweise mit einer Kombination aus bekannten numerischen Verfahren für nicht-lineare Zielfunktionen und heuristischem Vorgehen gelöst. Des Weiteren werden für einige Spezialfälle andere zuverlässigere Verfahren vorgestellt.