AHA-BUCH

Preference Learning
-21 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Preference Learning

 Ebook
Sofort lieferbar | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 179,95 €

Jetzt 142,79 €*

ISBN-13:
9783642141256
Einband:
Ebook
Seiten:
454
Autor:
Johannes Fürnkranz
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
1 - PDF Watermark
Sprache:
Englisch
Beschreibung:

The first book dedicated to this new branch of machine learning and data mining, this comprehensive treatment, which covers everything from label ranking to preference learning and recommender systems, will be required reading for researchers working in AI.

Preference Learning: An Introduction.- A Preference Optimization Based Unifying Framework for Supervised Learning Problems.- Label Ranking Algorithms: A Survey.- Preference Learning and Ranking by Pairwise Comparison.- Decision Tree Modeling for Ranking Data.- Co-regularized Least-Squares for Label Ranking.- A Survey on ROC-Based Ordinal Regression.- Ranking Cases with Classification Rules.- A Survey and Empirical Comparison of Object Ranking Methods.- Dimension Reduction for Object Ranking.- Learning of Rule Ensembles for Multiple Attribute Ranking Problems.- Learning Lexicographic Preference Models.- Learning Ordinal Preferences on Multiattribute Domains: the Case of CP-nets.- Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models.- Learning Aggregation Operators for Preference Modeling.- Evaluating Search Engine Relevance with Click-Based Metrics.- Learning SVM Ranking Function from User Feedback Using Document.- Metadata and Active Learning in the Biomedical Domain.- Learning Preference Models in Recommender Systems.- Collaborative Preference Learning.- Discerning Relevant Model Features in a Content-Based Collaborative Recommender System.- Author Index.- Subject Index
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction.

This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems.

The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.