AHA-BUCH

Applied Multivariate Statistics with R
-26 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Applied Multivariate Statistics with R

 eBook
Sofort lieferbar | 1027 Stück | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 96,95 €

Jetzt 71,39 €*

ISBN-13:
9783319140933
Einband:
eBook
Seiten:
393
Autor:
Daniel Zelterman
Serie:
Statistics for Biology and Health
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
1 - PDF Watermark
Sprache:
Englisch
Beschreibung:

Introduction.- Elements of R.- Graphical Displays.- Basic Linear Algebra.- The Univariate Normal Distribution.- Bivariate Normal Distribution.- Multivariate Normal Distribution.- Factor Methods.- Multivariate Linear Regression.- Discrimination and Classification.- Clustering.- Time Series Models.- Other Useful Methods.- References.- Appendix.- Selected Solutions.- Index.
This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the Behavior Risk Factor Surveillance System, discussing both the shortcomings of the data as well as useful analyses. The text avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.