Analysis and Design of Frp Reinforced Concrete Structures

Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

161,95 €*

Alle Preise inkl. MwSt. | zzgl. Versand
Gewicht:
794 g
Format:
239x208x18 mm
Beschreibung:
This comprehensive reference provides proven design procedures for the use of fiber-reinforced polymer (FRP) materials for reinforcement, prestressing, and strengthening of reinforced concrete structures. The characteristics of FRP composite materials as well as the latest manufacturing techniques are discussed. Detailed illustrations and tables, design equations, end-of-chapter problems, and real-world case studies are included in this authoritative resource.
This comprehensive reference provides proven design procedures for the use of fiber-reinforced polymer (FRP) materials for reinforcement, prestressing, and strengthening of reinforced concrete structures.
Chapter 1. Introduction1.1. Evolution of FRP Reinforcement1.2. Review of FRP Composites1.3. The Importance of the Polymer Matrix1.3.1. Matrix polymers1.3.2. Polyester resins1.3.3. Structural considerations in processing polymer matrix resins1.3.4. Reinforcing fibers for structural composites1.3.5. Effects of fiber length on laminate properties1.3.6. Bonding interphase1.3.7. Design considerations1.4. Description of Fibers1.4.1. Forms of glass fiber reinforcements1.4.2. Behavior of glass fibers under load1.4.3. Carbon fibers1.4.4. Aramid fibers1.4.5. Other organic fibers1.4.6. Hybrid reinforcements1.5. Manufacturing and Processing of Composites1.5.1. Steps of fabrication scheme1.5.2. Manufacturing methods1.6. Sandwich Construction1.7. Compression Molding1.8. Multi-Axial Fabric for Structural Components1.9. Fabrication of Stirrups1.10. FRP Composites1.11. FRP Composite Applications1.12. Composite Mechanics1.12.1. Laminate terminology1.12.2. Composite product forms1.13. Laminates Types and Stacking SequenceChapter 2. Material Characteristics of FRP Bars2.1. Physical and Mechanical Properties2.2. Physical Properties2.3. Mechanical Properties and Behavior2.3.1. Tensile behavior2.3.2. Compressive behavior2.3.3. Shear behavior2.3.4. Bond behavior2.4. Time-Dependent Behavior2.4.1. Creep rupture2.4.2. Fatigue2.5. Durability2.6. Recommended Materials and Construction Practices2.6.1. Strength and modulus grades of FRP bars2.6.2. Surface geometry, bar sizes, and bar identification2.7. Construction Practices2.7.1. Handling and storage of materials2.7.2. Placement and assembly of materials2.8. Quality Control and InspectionChapter 3. History and Uses of FRP Technology3.1. FRP Composites in Japan3.1.1. Development of FRP materials3.1.2. Development of design methods in Japan3.1.3. Typical FRP reinforced concrete structures in Japan3.1.4. FRP for retrofitting and repair3.1.5. Future uses of FRP3.1.6. FRP construction activities in Europe3.2. Reinforced and Prestressed Concrete: Some Applications3.2.1. Rehabilitation and strengthening3.2.2. Design guidelines3.3. FRP Prestressing in the USA3.3.1. Historical development of FRP tendons3.3.2. Research and demonstration projects3.3.3. Future prospectsChapter 4. Design of RC Structures Reinforced with FRP Bars4.1. Design Philosophy4.1.1. Design material properties4.1.2. Flexural design philosophy4.1.3. Nominal flexural capacity4.1.4. Strength reduction factor for flexure (¿)4.1.5. Check for minimum4.1.6. Serviceability4.2. Shear4.2.1. Shear design philosophy4.2.2. Shear failure modes4.2.3. Minimum shear reinforcement4.2.4. Shear failure due to crushing of the web4.2.5. Detailing of shear stirrups4.2.6. Punching shear strength of FRP reinforced, two-way concrete slab4.3. ISIS Canada Design Approach for Flexure4.3.1. Flexural strength4.3.2. Serviceability4.4. Design Approach for CFRP Prestressed Concrete Bridge Beams4.4.1. Theoretical development of design equations4.4.2 Deflection and stesses under service load condition4.4.3. Nonlinear responseE4.1. Design Example 1E4.2. Design Example 2E4.3. Design Example 3E4.4. Design Example 4: A Case Study ProblemE4.5. Design Example 5: Case Study of CFRP Prestressed Concrete Double-T BeamE4.6. Design Example 6: Case Study of Cfrp Prestressed Concrete Box-BeamE4.7. Design ExampleChapter 5. Design Philosophy for FRP External Strengthening Systems5.1. Introduction5.1.1. Non-prestressed soffit plates5.1.2. End anchorage for unstressed (non-prestressed) plates5.1.3. Prestressed soffit plates5.2. Flexural Failure Modes and Typical Behavior5.2.1. Flexural failure5.2.2. Shear failure5.2.3. Plate-end debonding failures5.2.4. Plate-end interfacial debonding5.2.5. Intermediate crack-induced interfacial debonding5.2.6. Other debonding failures5.2.7. Some additional aspects of debonding5.3. Flexural Design Considerations5.3.1. Flexural design philosophy (ACI 440-2R-02)5.3.2. Strengthening limits5.4. Design Material Properties5.5. General Considerations for Flexural Strengthening5.5.1. Assumptions5.5.2. Section shear strength5.5.3. Existing substrate strain5.6. Nominal Strength, Mn5.6.1. Controlling failure modes5.6.2. Strain level in FRP reinforcement5.6.3. Stress level in the FRP reinforcement5.7. Ductility5.8. Serviceability5.9. Creep-Rupture and Fatigue Stress Limits5.10. Applications of Flexural Design Considerations to a Singly Reinforced Rectangular Section5.10.1. Ultimate flexural strength5.10.2. Stress in steel under service loads5.10.3. Stress in FRP under service loads5.11. Shear Strengthening5.11.1. Nominal shear strength (ACI 440.2R-02)5.11.2. Shear strength contribution of FRP system5.12. Spacing of FRP Strips5.13. Reinforcement Limits5.14. Design Procedure for Strengthening of RC Beam Using NSM Bars5.14.1. Flexural strengthening5.14.2. Design procedure for flexural strengthening using NSM FRP rebars5.14.3. Shear strengthening5.14.4. Anchorage length requirement5.15. ACI 440.2R-02 Design Approach for NSM FRP Strengthening5.15.1. Flexural design approach5.15.2. Nominal flexural strength5.16. Design for Shear Strength5.16.1. Ultimate shear strength5.17. Serviceability5.18. Detailing5.19. Development Length of NSM FRP Bars5.20. ISIS Canada Design Approach for External FRP Strengthening5.20.1. Flexural strengthening of beam and one-way slab5.20.2. Flexural design approach5.21. ISIS Canada Design Guidelines for Shear Strengthening5.21.1. Design principles5.22. External Strengthening of Columns5.22.1. Slenderness limits of circular columns5.22.2. Confinement5.23. Fundamentals of Seismic Retrofit of Columns5.23.1. Potential failure modes5.23.2. Flexural ductility of retrofitted columns5.23.3. Shear strength contributions5.23.4. Flexural plastic hinge confinement5.23.5. Lap splice clampingE5.1. Design Example 1E5.2. Design Example 2E5.3. Design Example 3: Shear Strengthening Using CFRP Laminates-A Case StudyE5.4. Design Example 4: A Case Study ProblemE5.5. Design Example 5E5.6. Design Example 6E5.7. Design Example 7E5.8. Design Example 8E5.9. Design Example 9E5.10. Design Example 10E5.11. Design Example 11E5.12. Design Example 12E5.13. Design Example 13E5.14. Design Example 14E5.15. Design Example 15: Shear Strengthening as per ISIS Canada Design ApproachChapter 6. Durability-Based Design Approach for External FRP Strengthening of RC Beams6.1. Designing of Reinforced Concrete Beams6.1.1. Compute design material properties6.1.2. Compute the existing substrate strain6.1.3. Compute the balanced plate ratio (¿f, b)6.1.4. Compute the maximum allowable plate ratio (¿f, max)6.1.5. Proportion of the FRP plate6.1.6. Compute the balanced plate ratio (¿f, bb) to determine failure modes6.1.7. Determine the critical plate ratio (¿f, c)6.1.8. Determine the mode of failure6.1.9. Nominal moment capacity of strengthened beams6.1.10. Compute design moment capacity6.1.11. Allowable services stressesE6.1. Design Example 1: A Case Study ProblemE6.2. Design Example 2: A Case Study ProblemE6.3. Design Example 3: A Case StudyBibliographyIndex

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.